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Purpose: We found that heart rate (HR) complexity metrics such as sample entropy (SampEn) identified
patients with trauma receiving lifesaving interventions (LSIs). We now aimed (1) to test a multiscale entropy
(MSE) index, (2) to compare it to single scale measures including SampEn, and (3) to assess different
parameter values for calculation of SampEn and MSE.
Methods: This was a study of combat casualties in an emergency department in Iraq. Electrocardiograms
of 70 acutely injured adults were recorded. Twelve underwent LSIs and 58 did not. Lifesaving
interventions included endotracheal intubation (9), tube thoracostomy (9), and emergency transfusion
(4). From each electrocardiogram, a segment of 800 consecutive beats was selected. Offline, R waves were
detected and R to R interval time series were generated. Sample entropy, MSE, and time domain
measures of HR variability (mean HR, SD, the proportion of pairs of consecutive NN intervals that differ
by more than 20 and 50 milliseconds, square root of the mean of the squares of differences between
adjacent NN intervals) were computed.
Results: Differences in mean HR (LSI: 111 ± 33, non LSI: 90 ± 17 beats/min) were not significant. Systolic
arterial pressure was statistically but not clinically different (LSI: 123 ± 19, non LSI: 135 ± 19 mm Hg).
Sample entropy (LSI: 0.90 ± 0.42, non LSI: 1.19 ± 0.35; P b .05) and MSE index (LSI: 2.58 ± 2.55, non LSI:
5.67 ± 2.48; P b .001) differed significantly.
Conclusions: Complexity of HR dynamics over a range of time scales was lower in high risk than in low risk
combat casualties and outperformed traditional vital signs.

Published by Elsevier Inc.

1. Introduction

This study was motivated by the need for enhanced vital sign
monitoring in emergency combat casualty care. In 2009, Martin and
colleagues [1] analyzed 151 deaths at a combat support hospital (CSH)
in Iraq; most occurred within 1 hour of admission, either from head
injury or from hemorrhage. Opportunities for improving risk
assessment were noted in almost half of the cases, related to delays
in hemorrhage control during transportation or in resuscitation

efforts. Earlier detection of hemorrhagic shock implies a need for
improvements in the timely use and diagnostic accuracy of vital sign
monitors [2]. To improve current vital sign monitors, without adding
new sensors or boxes to the medic's kit, we are examining the use of
computational tools that characterize and quantify the variability of
beat to beat fluctuations in heart rate (HR) time series for risk
stratification. Our underlying hypothesis is that information about the
integrity of the body's neuroautonomic control mechanisms is
encoded in the way that the HR spontaneously changes over time
and that illness or injury impairs these mechanisms in ways that can
be measured.

Specifically, we have applied measures of irregularity such as
approximate entropy (ApEn) [3] and sample entropy (SampEn) [4], to
the analysis of time series comprising between 100 and 800 heart
beats [5 7]. We have referred to these as measures of HR complexity.
Heart rate complexity was lower in civilian patients with trauma from
the Trauma Vitals USA database who received prehospital lifesaving
interventions (LSIs) than that in those who did not [8]. Heart rate
complexity was also lower in patients with trauma who went on to
die than that in survivors [9]. Quantification of the degree of
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complexity, using SampEn and/or ApEn, consistently outperformed 
traditional vital signs such as the mean HR. blood pressure (BP), or 
peripheral saturation of oxygen in identifying critically injured 
patients with trauma (8,9). 

In the present study, we applied a recently described method 
for quantifying HR complexity, multiscale entropy (MSE). The 
rationale for MSE is as follows. Complex time series are typically 
highly irregular, but not all irregular time series are complex. For 
example, random signals such as those obtained by shuffling any 
sequence of numbers may be very variable but carry, by construction, 
no information. Thus, these shuffled sequences are not complex. Truly 
complex signals such as those produced by healthy physiologic 
systems, are far from random; instead, they exhibit complex patterns 
on multiple time scales. The information encoded on these multiple 
time scales is not adequately captured by ApEn or SampEn, which 
quantify the irregularity of a signal. To help obviate this limitation, a 
more generalized method called MSE was introduced (10,11). As the 
name implies, MSE quantifies entropy over multiple time scales. By 
doing so, MSE can distinguish random signals from truly complex 
ones (http://physionet.org/tutorials/cv/ ). In this study, we computed 
both SampEn and MSE, along with traditional HR variability (HRV) 
metrics (described below). We also computed quadratic SampEn 
(QSampEn), a refinement of the original SampEn statistic, as 
described in the Appendix. 

The goals of this study were 2 fold. First, we sought to test the 
hypothesis that MSE would be lower in combat casualties who 
undergo an LSI upon arrival to the CSH emergency department (ED) 
than that in those who do not. Second, we sought to elucidate the 
implications of selecting different parameter values for the calculation 
of Sam pEn and MSE, using very short segments of data obtained under 
conditions of battlefield trauma where extreme variations in HR 
dynamics are observed. 

2. Materials and m ethods 

2.1. Subjects 

This study was conducted under a protocol reviewed and 
approved by the Brooke Army Medical Center Institutional Review 
Board, in accordance with the approved protocol, and in compliance 
with the Helsinki Declaration. The study was performed under 
provisions of waived consent. We acquired continuous electrocardio 
gram (ECG) recordings from a convenience sample of combat 
casualties arriving at the US Army CSH located at Ibn Sina Hospital, 
Baghdad, Iraq, during the recent conflict. The ECGs were obtained 
based on the availability of a deployed research team at this hospital. 
Data on a total of 101 patients were collected. Of these, 31 were 
excluded: 20 patients had ECGs of at least 200 but Jess than 800 beats; 
2 patients had no ECGs; 9 patients had ECGs which were very short or 
very noisy. These exclusions left 70 complete data sets, consisting of at 
least 800 beats of EKG without noise or ectopy. Of these 70 casualties, 
12 patients underwent LSis in theCSH ED (LSI group) and 58 (non LSI 
group) did not. Only LSis performed in the ED were considered in this 
study. The Jist of potential LSis included cardiopulmonary resuscita 
tion, cricothyroidotomy, endotracheal intubation, needle decompres 
sion of pneumothorax, pericardiocentesis, emergency transfusion, 
tube thoracostomy, and cardioversion. 

2.2. Data acquisition and analysis 

Upon admission to the ED, casualties were placed on a PIC 50 vital 
signs monitor (Welch Allyn, Skaneateles Falls, NY). These monitors 
had an analog to digital data acquisition rate of 375 Hz. Previous 
work by Voss eta! [12) confirmed that a sampling rate of 128Hz or 
greater was sufficient for nonlinear measures of HRV. Electrocardio 
gram data were recorded on standard digital memory cards. Other 

patient data were retrospectively recorded on paper by the deployed 
research team. The memory cards and the case report forms were 
then mailed to the US Army Institute of Surgical Research, Fort Sam 
Houston, Tex. for analysis. WinCPRS software (Absolute Aliens OY, 
Turku, Finland) was used to process the ECGs and to identify the R 
waves. A trained analyst then reviewed every R wave detected and 
made corrections as needed, selecting 800 beats of clean ECG from 
each data set. WinCPRS software then outputted the R to R (RR) 
interval time series. In these 800 beat data sets, each R wave 
represented a normal sinus (N) rhythm beat. (Therefore, the RR 
interval time series are identical to the NN interval series.) We wrote 
custom software in java and C++ to perform all subsequent HR 
dynamics calculations. 

2.3. Measures 

We calculated standard time domain metrics ofHRV: mean HR. SO 
of the normal to normal beats, the square root of the mean squared 
differences of consecutive NN intervals, and the proportion of pairs of 
consecutive NN intervals that differ by more than 20 and 50 
milliseconds (13 15). We calculated single scale (SampEn, QSampEn) 
and multiscale (MSE) entropies as detailed in the Appendix. 

2.4. Statistical analysis 

Statistical analysis was done using SAS v. 9.1 (SAS Institute, Cary, 
NC). t or Wilcoxon tests were performed to analyze continuous 
variables, and x2 tests were used to analyze categorical variables, as 
appropriate. Significance was accepted at P < .05. 

3. Results 

Lifesaving interventions performed included endotracheal in tuba 
tion (9), tube thoracostomy (9), and emergency transfusion ("Code 
Red") (4). There was 1 death in the LSI group and none in the non LSI 
group. Basic clinical information for the LSI and non LSI patients are 
presented in Table 1. 

Heart rate variability time domain measures are presented in 
Table 2. The average time between consecutive NN intervals trended 
lower for the LSI group, that is, the HR was faster, compared with the 
non LSI group. However, this difference was not statistically signif 
icant (P = .07). All standard time domain measures of HRV were 
significantly lower for the LSI than for the non LSI group. 

SampEn, QSampEn, and MSE index values are presented in Table 3. 
Sample entropy, calculated using the most widely used param 

eter values (m = 2 and r = 20% of the SO of the time series), 
showed reduced RR interval irregularity for the LSI group compared 
with the non LSI group. Statistically, even more robust separation 
between the 2 groups was seen when SampEn was computed for a 
fixed r value of 6 milliseconds and m = 2. The MSE index, which 

Table 1 
Basic patient data 

Variable 

Age (y) 
Sex (male) 
Blunt or explosive mechanism 
HR (beats/ min) 
SAP (mm Hg) 
GCSIOtal 
GCSmo10r 

LSI (n = 12) 

23 ± 15 
12 (100%) 
1 (8.3%) 
111 ± 33 
123 ± 19* 
12 ± 5** 
5 ± 2** 

Non-LSI (n = 58) 

27 ± 10 
52 (89%) 
19 (32%) 
90 ± 17 
135 ± 19 
15 ± 0 
6 ± 0 

Data are means ± SD. LSI indicates patients who did receive ISis; non-LSI, patients who 
did not receive LSis ; blunt/ explosive mechanism. number of patients in each group 
injured by a blunt or explosive mechanism; SAP, systolic arterial pressure. 
* P< .05. 

•• P< .001. 
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Table 2 
HRV time-<lomain measures 

Variables 

AVNN 
SONN 
rMSSO 
pNN20 
pNNSO 

LSI 

0.589 ± 0.185 
0.023 ± 0.013 
0.009 ± 0.008 
7.13 ± 13.71 
0.91 ± 2.84 

Non-LSI 

0.694 ± 0.135 
0.038 ± 0.020 
0.019 ± 0.014 
2220±22n 
5.42 ± 10.83 

p 

.()67 

.022 

.005 

.006 

.018 

Values of H RV time-domain measures for the LSI and non-LSI groups. AVNN indicates 
average of aD nonnal-to-nonnal (NN) intervals. in seconds; SONN, SO of all NN 
intevals. in seconds: rMSSO, square root of the mean of the squares of differences 
~tween adjacent NN . intervals, in seconds; pNN20 and pNN50, pe-centage of 
differences between adjacent NN intervals that are greate- than 20 and 50 seconds 
respectively. ' 

incorporates the SampEn values for scales 1 to 4, was significantly 
lower for the LSI than for the non LSI group. The MSE index also 
provided more robust separation between groups than SampEn used 
as a single scale measure. 

Of note, comparable results were obtained for Sam pEn calculated 
with fixed r values ranging from 3 to 1 0 milliseconds, for m = 1, and 
for m = 3. In addition, comparable results were obtained with the 
QSampEn measurement. 

4. Discussion 

The principal finding in this study was that combat casualties who 
underwent tsls in the ED of a CSH in Iraq had lower HR complexity 
than those who did not. This difference held across multiple time 
scales, as quantified by the MSE method. We have previously reported 
lower HR complexity in seriously injured patients and animals by use 
of2 closely related, single scale measures: SampEn and ApEn. To our 
knowledge, this study is the first in which MSE has been applied to 
acutely injured patients and the first specific application of these 
techniques to combat casualties in a theater of operations. 

The rationale for using MSE is as follows. The entropy of a time 
series is a measure of its degree of randomness or unpredictability. 
Sample. entropy is an algorithm designed for quantifying the entropy 
of relatively short and noisy signals. Multiscale entropy generalizes 
SampEn to multiple time scales. One major advantage of using MSE 
over SampEn, especially for the study of physiology, is that SampEn 
only quantifies how random a signal is. It may fail to distinguish 
between complex and random signals. Multiscale entropy probes a 
signal on multiple time scales, that is, at various levels of resolution 
(http://www.physionet.org/physiotoolsjmsejtutorial/ ). By doing so, 
MSE can discriminate between truly complex signals, that is, those 
containing information on multiple scales, from those that are just 
variable. Multiscale entropy has been applied to a wide class of 
physiologic and biologic signals. including HR time series, intracranial 
pressure signals, magnetoelectroencephalographic recordings, red 
blood cell flickering motions, and others, to help quantify the output 

Table3 
Single and MSE measures 

Measures LSI Non-LSI p 

Single scale 
SampEn (r = 20%) 0.90 ± 0.42 1.19 ± 035 .035 
SampEn (r = 6 ms) 0.58 ± 0.56 1.17 ± 059 .003 
QSampEn 8.73 ± 3.40 12.58 ± 278 .002 

Multiscale 
MSE index (scales 1-4) 2.80± 260 5.78 ± 245 .001 

Results for entropy-based measures. Values ofSampEn are presented for r= 20%ofthe 
time series' SO and for r = 6 milliseconds. Values of QSampEn (see Appendix) are 
presented for a minimum number of matches (M) of30. The MSE index. defined as the 
summation ofSampEn values for scales 1 to 4, is presented In all cases, the parameter 
m was set to 2 See text for details. 

of systems controlled by regulatory mechanisms operating on 
multiple time scales [16 191. 

When applied to the cardiovascular system, MSE integrates 
information about the processes underlying the control of the HR. 
High MSE values are consistent with the notion that the processes 
controlling the HR in healthy subjects operate over multiple time 
scales. For example, loss of HR complexity has been reported in a 
number of settings with altered (dysregulated) neuroautonomic 
control, including chronic heart failure, aging, and acute major 
depressive disorder 111.201 
~at is the .rationale for developing complexity based vital signs 

for IOJUred patients? Vital sign measurement is a core practice in 
prehospital, emergency, and critical care. The Centers for Disease 
Control and Prevention's 2011 Guidelines for Field Triage of Injured 
Patients is a revision of the American College of Surgeons Committee 
on Trauma's Decision Scheme.It states that the first step in triage is to 
measure vital signs and level of consciousness. Injured patients with a 
Glasgow Coma Scale ( GCS) score of 13 or lower, a systolic BP less than 
90 mm Hg, or a respiratory rate less than 10/min or greater than 29/ 
min (or a requirement for ventilator support) are triaged to a trauma 
center, irrespective of anatomic findings or mechanism of injury [211. 

Several large studies, however, have led to a reappraisal of these 
standard vital sign based triage criteria [22 271. These studies have 
found that (i) vital sign based trauma triage, alone, is associated with 
a significant undertriage rate: (ii) undertriage is associated with 
increased mortality; (iii) vital sign ranges previously considered 
"normal" may actually be associated with increased mortality; (iv) 
predictive equations based on multiple variables outperform single 
vital signs in the prediction of mortality; and (v) continuous vital sign 
data outperform single vital signs. 

Given these findings, some authors have introduced new devices 
into emergency care, for example, to measure lactate levels [28 30j.ln 
the present study, we took a different approach to the diagnostic 
problem in trauma. We applied new mathematical methods of 
analysis to the beat to beat variability inherent in the HR. This 
approach takes advantage of the fact that the ECG is already acquired 
(but underused) in severely injured patients. Therefore, we sought to 
obtain more information from an existing sensor, rather than to add 
new sensors to our patients. 

Our previous work included studies in animal models and in 
prehospital and intensive care unit (ICU) patients. In anesthetized 
sheep, severe hemorrhagic shock caused a decrease in the high 
frequency power of HRV, as well as a decrease in the ApEn and the 
fractal dimension of the HR [61. We saw similar changes in 
anesthetized swine with hemorrhage [51. and with chest trauma 
followed by hemorrhage [71. In prehospital patients with trauma, 
ApEn was an independent predictor of mortality, even when GCS and 
injury severity score were taken into account [91. In the same 
database, there was no difference in HR or BP between patients 
undergoing an LSI and those not, but patients differed on Sam pEn and 
GCS (motor component) [81. Low SampEn and ApEn were features of 
patients on admission to the burn IOJ and were restored to normal 
values with fluid resuscitation [311. On further analysis, we found that 
SampEn retained its ability to discriminate survivors from nonsurvi 
vors in patients with prehospital trauma, even as we moved from 
large data sets (800 heart beats) down to much smaller data sets ( 100 
heart beats) [321. 

In the present study, we again note lower SampEn in patients 
undergoing LSis. In addition, we extend these findings by detecting 
lower HR complexity at multiple time scales as documented by MSE. 
In patients with trauma, there are at least 2 physiologically based 
explanations for this finding. One is that hypovolemia causes a loss of 
HR complexity through a vagally mediated process, related to 
compensatory withdrawal of parasympathetic tone to the heart. 
This mechanism would explain, for example, the decrease in high 
frequency and short term time domain HRV measures, which often 



accompany the decrease in HR complexity. The other explanation is
that brain injury or ischemia may cause a loss of HR complexity
through central nervous system mediated processes. The latter
mechanism would explain the lower mean GCS score observed in
the LSI vs non LSI patients in this study. Of note, HR complexity has
been proposed as an indicator of the overall adaptiveness and
plasticity of the HR control system, rather than as a diagnostic test
for any specific type of injury.

In this study, we also extended previous analyses by exploring
different methodological approaches for choosing the parameter r for
calculation of SampEn and the MSE index. Specifically, we compared
the results using a fixed r value (based on the sampling frequency of
the original ECG data) with those obtained using the “standard”
implementation (based on an arbitrary percent [eg, 15% 20%] of each
time series' SD]. We found that for HR analysis, the use of the fixed r
value provided better discrimination for group comparisons using
either single or multiscale measures. Furthermore, we found that in
cases of very low time series variance, sole reliance on the SD based
method could lead to spuriously high values of SampEn or MSE
because of “pseudo fluctuations” generated by discretization errors.
This problem is particularly relevant in trauma conditions, in which
low HR variance is most prevalent. Finally, we note that the
computation of MSE, not just traditional SampEn (equivalent to
scale 1 of MSE), provides a more general assessment of HR complexity
and allows discrimination of irregularity caused by random variations
with low information content (eg, R R fluctuations with atrial
fibrillation) vs R R fluctuations with intrinsically higher information
content (eg, sinus rhythm dynamics in healthy subjects with intact
neuroautonomic control) [10,11,20].

Several other groups have contributed to the study of complex HRV
in critical illness. Norris et al [33] reported an increase “cardiac
uncoupling” (defined by a higher percentage of 5 minute intervals
within 24 hours for which the HR SD fell within the range 0.3 to 0.6
beats/min) in patients with trauma who died in the ICU, regardless of
etiology of death. Ahmadand colleagues [34] at theUniversity ofOttawa
have developed a multiparameter HRV system. In a pilot study in
patients with bone marrow transplant, both SampEn and MSE (as well
as other HRV metrics) decreased before the clinical diagnosis of sepsis.

Finally, Moorman and colleagues [35] studied the impact of
information about HR dynamics in the neonatal ICU setting. They
have developed a real time index, termed HR characteristics, which
takes into consideration multiple features of the neonatal RR interval
time series [36,37]. Their randomized controlled clinical trial included
3003 very low birth weight infants, a group at increased risk for
sepsis [35]. It showed that physician access to the real time HR
characteristics index was associated with a significant reduction in
infant mortality, from 10.2% to 8.1%. Their finding that measures of HR

dynamics in an newborn ICU setting can lead to decreased mortality
presumably by increasing clinicians' situational awareness is an
important contribution to the emerging field of anticipatorymedicine.

5. Limitations

Our study's limitations include the relatively small sample size and
the potential inaccuracies inherent in collecting data in a busy ED in a
war zone. Of the 325 patients on whom some effort was made to
collect ECGs under this protocol, only 70 patients had ECG of sufficient
length and quality, as well as accompanying demographic data. Also,
the imbalance in the number of patients in the 2 groups (12 LSI vs 58
non LSI) may introduce selection bias. We were unable to determine
the relationship between the timing of LSIs and the timing of ECG
collection. We also did not record whether patients received sedative
medications during their ED care, which could influence HR complex
ity. The problem of the timing of interventions is a recurring theme in
this type of research, which must be addressed in future prospective
study designs. Decreased mental status is associated with the
performance of LSIs in this study, manifested by differences between
LSI and non LSI patients on both total GCS score (GCStotal) and motor
component of the GCS score (GCSmotor). In the present study, the non
LSI group is essentially a group with normal GCStotal and GCSmotor

scores of 15± 0 and 6± 0, respectively. This observation is consistent
with our previous findings in patients with prehospital trauma [9].
Prehospital and post ED data were also lacking. Unfortunately,
prehospital data from the battlefield have been notoriously difficult
to obtain. It will be of great interest to study changes in MSE and other
HRV measures over time, in response to therapy.

Finally, future studies should also use real time (as opposed to
offline, post hoc) calculation of HR complexity. Once a sufficient
number of heart beats have been recorded, the entropy algorithms
take only about 1 second to run. Sample entropy computation can be
performed as soon as the first 100 beats have been collected.
Multiscale entropy computation can then be added as soon as the
first 800 beats have been collected, serially updating the estimates as
more data become available. Based on work by Moorman et al [35]
and Ahmad et al [34], we are confident that such real time
computation is technologically quite feasible.

6. Conclusions

The amount of complex irregularity in beat to beat fluctuations in
the HR can be quantified by SampEn. Multiscale entropy extends this
measure to progressively longer time scales. In this study, we found
that lower SampEn and MSE index were associated with the

Fig. 1. Time series of the RR intervals for a patient who underwent a lifesaving intervention. The discretization interval Δ = 1/375~2.7 milliseconds is the inverse of the sampling
frequency of 375 Hz. Note that the RR intervals aremultiples ofΔ: 488, 490.7, 493.3, 496, 498.7, 501.3, 504, and 506.7 milliseconds. The time series' SD is 3.6milliseconds. Note that in
this case, 20% of the SD is 0.72 milliseconds b Δ. Therefore, the number of matches obtained with r = 20% of the SD is the same as with r = 0 milliseconds.
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performance of LSIs in combat casualties arriving at an ED in a combat
zone. We also found that careful selection of the r parameter based on
the ECG sampling rate significantly improves the ability of both
SampEn and MSE index to discriminate such patients. Prospective
studies of these “new vital signs” are needed to establish their
potential role in clinical assessment and management of critically
injured patients.
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Appendix

Single scale entropy measurement

We implemented a previously published algorithm for SampEn
[4]. Briefly, SampEn is a conditional probability measure; it quantifies
the likelihood that if a sequence ofm consecutive data points matches
(within a tolerance r) a template sequence of the same length, then
the 2 will still match when their length increases from m to m + 1
data points.

Selection of the r parameter is important for determining the
entropy of a signal, for the following reasons. SampEn quantifies
the degree of signal irregularity. Both the correlation properties and
the variance (energy) of the signal contribute to its entropy. Among
signals of equal variance, those generated by uncorrelated random
processes are the most entropic. In addition, among signals with the
same correlation properties, those with higher amplitude (ie, larger
SD) are the most entropic. As explained below, different ways of
selecting the r value for the calculation of SampEn may weight one
property more than the other.

For the calculation of SampEn, 2 data points, NNi and NNj, with
different numerical values, for example, 800 and 802 milliseconds,
may be considered indistinguishable if the level of accepted noise is
below their absolute difference in this case, 2 milliseconds. The value
of the parameter r sets this “tolerance” level. If |NNi − NNj| N r, then
NNi ≠ NNj; otherwise, NNi = NNj.

For physiologic signal analysis, r is commonly chosen as a
percentage (15% 20%) of the time series' SD, a procedure equivalent
to normalizing the time series to unit variance before calculating
SampEn. This implementation assures that the value of SampEn is the
same for all time series generated by the same dynamical process
despite possible differences in the amplitude of their fluctuations. This
approach is necessary for comparing the entropy of the fluctuations
generated by 2 different regulatory systems, for example, HR and
body temperature. Because the amplitude range and units of these
fluctuations are not comparable, prior normalization of the time series
is required. However, the choice of r as a percentage of SD is
problematic when some of the time series' SDs are very low. In such
cases, the 15% 20% “rule” may yield values that are below the
resolution (quantization level, Δ) of the time series (Fig. 1).

In this study, the ECG recordings were acquired at a sampling
frequency of 375 Hz. Thus, the time (Δ) between 2 consecutive ECG
voltage values is Δ = 1/375~2.7 milliseconds. Furthermore, each RR

interval, as well as the difference between any 2 RR intervals, is a
multiple of Δ (see Fig. 1).

The SDs of the time series analyzed here varied between 5 and 63
milliseconds. When r is set to 20% SD, for some time series, SampEn
with be calculated with r=1millisecond and for others with r=12.6
milliseconds.When r=1millisecond, 2 RR intervals, for example, 800
and 802, will be “seen” as different from each other. However, when r
= 12.6 milliseconds, 2 other intervals, for example, 800 and 812, will
be “seen” as equal. Choosing r as a percentage of the SD effectively
implies accepting different levels of noise for the analysis of different
subjects. Furthermore, in this study, the “20% rule” yielded r values
below the discretization level Δ for 7 of the 70 time series analyzed. In
these cases, using r = 20% SD yielded the same results as r = 0.
Generally stated, the values of SampEn obtained for r in the interval
nΔ ≤ r b (n + 1)Δ are the same as for r = nΔ.

An alternative solution to the problem of selecting an appropriate r
value is to choose a single fixed value for all the time series that is
greater than the discretization level [20]. In this study, we chose r=6
milliseconds. This implementation does not “discount” the contribu
tions to the entropy values that arise from differences in the time
series' variances, but importantly does insure that the level of noise
accepted is the same for all data sets.

Lake and Moorman [38] sought to solve the problem of selecting
the r value by converting the calculation of the conditional probability
that goes into the definition of SampEn to that of a density. They
introduced the QSampEn, which they defined as QSampEn = SampEn
+ ln(2r). Quadratic SampEn does not depend on the value of r but on
the minimum number of required matches (M). In this study, we also
calculated QSampEn values for M = 30.

Them value reflects the extension of local correlations in the data.
The m value is often chosen as the first zero of the autocorrelation
function. For the analysis of RR intervals time series,m=2 is themost
common choice and the one adopted here.

Multiple scale entropy measurement

Multiscale entropy quantifies the degree of irregularity (measured
using SampEn) of a time series over multiple time scales. Time series
that are highly irregular thus, more entropic over a broad range of
scales are considered more complex than those that show irregular
behavior at only a single time scale.

The MSE algorithm consists of 3 steps: (i) coarse graining the
original time series to derive multiple signals, each of which captures
the system dynamics on a different scale; (ii) calculating a measure of
entropy suitable for finite time series (SampEn in this case) for each
coarse grained time series; and (iii) integrating the entropy values
over a predefined range of scales to obtain an index of complexity
(MSE index).

The element j of the coarse grained time series y for scale n is
calculated according to the equation: yj(n) = 1/n∑jn

i (j − 1)n + 1xi,
where xi, with 1≤ i≤ N, are the data points of the original time series.
TheMSE curve is obtained by plotting SampEn for each coarse grained
time series (ordinate) as a function of scale (abscissa). The length of
the original time series, N, determines the largest scale, n, analyzed
[10,11]. In this study, we used n = 4.
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